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Abstract

The linear theory of land and sea breeze circulation (LSBC) shows that, in the absence of the
Coriolis force and under the hydrostatic approximation, there exists a similarity solution. In this
solution, the herizontal coordinate is scaled by Nx'*wi®, _the vertical coordinate by  «'*wi'®,
the horizontal velocity by gadT /N, the vertical velocity by gadT -ws/N? and the pressure by
gadTr'w3'®,  respectively, where wx and 47 are the frequency and amplitude of the temperature
variation at the ground, respectively, ¥ the Brunt-Vaisala frequency corresponding to the basic density
stratification, « the eddy thermal diffusivity, ¢ the gravity acceleration and « the thermal expansion
coefficient. The eddy Prandil number is assumed to be unity.

In the immediate neighborhood of the coastline, a small region in which non-hydrostatic effects
are significant and the similarity solution is invalid is present. The horizontal and vertical dimensions
of the non-hydrostatic region are of the order of (x/N)}* and the vertical velocity becores of the
same order of the horizontal one in this region. Qutside of the region, however, the similarity solution
remains always valid,

When the Coriolis force is present, the solution outside of the non-hydrostauc region depends
only on the non-dimensional Coriolis parameter f defined by fu/ws. If the horizontal dimension

. A of LSBC is defined by the distance from the coastline at which the non-dimensional velocity of the
onshore wind becomes equal to 0.03, Ax is given by =Nt 0" F{f), where e F(f) is a universal
function of f. F remains almost constant (about 2.1) for <1 (latitude less than 30°}. When f becomes
larger than 1, however, F starts to decrease rapidly and becomes equal to 0.9 for f=2.0 (at the Arctic
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or the Antarctic).

Effects of the eddy Prandt! number and the non-linear process on the flow characteristics are

also discugsed,

1. Introduction

Land and sea breeze circulation (hereafter
abbreviated by LSBC) is one of the oldest
subjects which have continuously attracted the
interest of meteorologists (Rottuno, 1983).
There have been extensive observational and
numerical studies on LSBC. However, several
basic questions concerning the dynamics of
LSBC seem not to have been answered yet. The
present paper addresses one of these questions,
“what determines the horizontal dimension of

This paper was presented at International Seminar on
Studies of Large-Scale Atmospheric Processes by Use of
Models (Kyoto, July 1986).
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LSBC? ”, in the frame work of a linear theory.

An attempt to study LSBC by means of a
linear theory begins with the work of Jeffreys
(1922). Since then, a number of works with
different interests have contributed to developing,
the theory. An excellent historical review of
these works are given in Rottuno (1983). Here,
we will be confined to review only several
works which have a direct link with the present
study.

It is generally recognized that the factors
which affect LSBC are: 1) diurnal variation of
the ground temperature, 2) diffusion of heat, 3)
static stability, 4) Coriolis force and 5) diffusion
of momentum (Kimura and Eguchi, 1978;
hereafter referred to as KFE). The first three
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factors are indispensable for producing LSBC.
Although the fourth factor is not necessary for
producing LSBC, it plays an important role in
determining its horizontal dimension and pro-
ducing the clockwise rotation of the wind
vector with time. The fifth factor is not neces-
sary for producing LSBC either. However, it
is important for satisfying the no-slip condition
at the ground and producing a realistic wind
profile near the ground.

A reasonable linear theory which includes
all the above five factors was first examined
by Walsh (1974). He has shown that the dyna-
mics of LSBC is well described by the hydro-
+ static equation system. As for the horizontal
dimension of LSBC, he mentioned that *“......
can be said to increase with ~?, This result
suggests an analogy between the circulation’s
horizontal extent and the Rossby deformation
radius NH/fx, where H is the depth of the
disturbance”. In the above quotation, & is the
Brunt-Viaisala frequency corresponding to the
density stratification of the atmosphere, and
Jx the Coriolis parameter. As will be shown
later, H is scaled by the diffusion length
(£/w4)"?, where ws« is the frequency of the
diurnal variation of the ground temperature
and + the eddy themmal diffusion coefficient
(or eddy kinematic viscosity v since he assumed
that the eddy Prandtl number Pr=v/k is unity).
Therefore, the horizontal dimension suggested
by Walsh (1974) is equivalent to N(x/ws)'"*/ fs.

KE considered LSBC over an island of finite
width in the absence of the Coriolis force.
Assuming that Pr is unity, they found that the
flow field is determined by a singie non-
difmensional parameter Q defined by Q=w«
(#*/N?c)'"%,  where [ is the width of the island,
Furthemmore, they showed that, for 2<1.3,
the flow structure is similar to that of the steady
heat island (£2=0). On the other hand, for
2213, they suggested that the horizontal
dimension of LSBC is mainly determined by the
characteristics of the intemal gravity wave by
comparing their results with those of their
inviscid model. However, they did not give an
‘explicit expression for the horizontal dimension.

It is interesting to note that the non-dimen-
sional parameter {2 can be written as
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where L =Nr'"0;"* has a dimensipn of
length. What does this length scale mean phy-
sically? It coincides with the horizontal wave-
length of the hydrostatic internal gravity wave
whose frequency and vertical scale are ws
and (x/w.)'"*, respectively. It also coincides
with the horizontal distance to which the same
internal gravity wave can transport its energy
from the coastline within a day {~w3'). Thus,
if the horizontal dimension of LSBC would
be determined by the dynamics of the internal
gravity wave as suggesied by KE, it should have
a close relationship to the length scale L.

Ueda {1983} extended the work of Walsh
(1974) to the case in which Pr is not equal to
unity, and also examined the structure of a
steady convection for which ws«=0 and fu3<0.
He obtained an experimental formula that the
horizontal dimension of LSBC was proportional
to

(N/w*)ﬂ.ﬂl (U/w*)”zpl"o. (13)

He also found that the Coriolis force did not
affect the horizontal dimension of LSBC.

Rottuno (1983) considered an inviscid model
of LSBC in which a thermal forcing is present
above the coastline. He showed that the nature
of the response of the inviscid atmosphere
changes markedly according to whether fy
is larger than wy or less, where @y is to be under-
stood as the forcing frequency. Especiaily he
suggested that the horizontal dimension of LSBC
is given by Nh{wi— f3)~"® for f+<wsand by
Nh(fi—wi) ' for fa>ws« where h is the
vertical scale of the thermal forcing and may
be regarded as the diffusion length '(s/@+)'"* for
the present purpose. If KE’s work is interpreted
as suggesting that the horizontal dimension of
LSBC is given by L=Ng"w:*®  as discussed
above, Rottuno’s work can be regarded as an
extension of KE’s idea to a rotating system.

We have reviewed several recent works which
study the linear dynamics of LSBC. Even if we
are confined to these works, there exist three
different expressions for the horizontal dimen-
sion of LSBC. Which expression is the correct
one? Where do such contradictions originate
from? It is the purpose of the present paper
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to provide definite answers to these questions.

In the following section, the problem is for-
mulated. The non-dimensionalization of the
governing equations and the boundary conditions
form the kernel of the present analysis. The
results are shown in Section 3 and are discussed
in the light of the previous studies in Section 4.
They are summarized in the last section.

2. Formulation of the problem
2.1. Model

Consider a straight coastline as shown in
Fig. 1. The x4~ and yx-axises are taken to the
horizontal directions perpendicular to and
along the coastline, respectively, and the z4-axis
to the vertical direction. The land occupies the
right half of the earth’s surface (x4« > 0), while
the sea the left half (x« < 0). The whole system
is rotating about the vertical axis at a constant
angular velocity fuf2.

The atmosphere in the basic state is assumed
to be motionless and have a constant positive
vertical temperature!? gradient I', so that the
temperature Ty in the basic state is given by

T*=T0*+FZ* , (2.1)

where Ty is the temperature at the earth’s sur-
face (zx = 0) in the basic state,

The temperature T, on the land surface is
assumed to change periodically with time around
its mean value with the amplitude 47", and the
frequency ws, so that it is given by

7

cly tur2
T=To+I 7+

2 A
Land

T=TD+AT'COS(|J‘1"

Seq
T=To

Fig. 1. Schematic diagram of the model.

D Strictly speaking, the word *‘temperature” should
be hereafter replaced by “potential temperature™,
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Tr=Tou+ATscoswety (x4>0), (2.2)

where f4 is time. On the other hand, the tem-
perature T g4 on the sea surface is assumed to re-
main constant with time;

Ts*zTo* (X*<0) . (2.3)

It is the purpose of this paper to examine the
response of the viscous stratified fluid to the
differential heating given by (2.2) and (2.3).
Since the vertical dimension of LSBC is ex-
pected to be small compared with the scale
height of the atmosphere, the atmosphere may
be regarded as a Boussinesq fluid.

2.2. Governing equations and non-dimensionali-
zation

If the response of the atmosphere is assumed
to be uniform in the alongshere direction
(8/0y+=0), the governing equations in the non-
dimensional form are given by

g +e(ugs +w )=
a‘” Z+Pr (52 ?;‘j) | (2.4)
g;:* ( gz”’a )
—=Pr (5a ZZ) (2.5)
2o )
ZP+T+P 52[52%1"—+ a;z] (2.6)
%?+ e e
rEL 2L @.7)

where the following non-dimensionalizations are
introduced:

x*zﬂ.(i)uax'

La=wi'l,
& Wyt
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£ 2 AT,;
z*.:(z;) z, (u*l v*)z‘w‘_N'—(u! v)!
AT '
Wy= “I’\’}‘ MN X w, p*=yaAT*(i—)mp,
Ti=4T 4T fe=ws- f. (2.9

tix, Vs and w, are the velocity components in the
X+, Y- and zs-directions. respectively, 77
deviation of the total temperature T* from the
basic state temperature Tx (T = Ta-Tx), Px
the kinematic pressure and g the gravity accele-
ration. The Coriolis parameter f, is given by
fx = 2w4 sing, where ¢ is the latitude. The
Brunt-Viisili frequency N is defined by N =
(gal’)'?, where a=1/T,, is the volume ex-
pansion coefficient.

The boundary conditions at the earth’s sur-
face are assumed to be such that all the velocity
components vanish and the temperature be
given by (2.2) and (2.3); i.e.,

u=v=w=0 and

COs ¢
T=
0

It is also required that u,yw and T vanish at
z=00,

The equations {2.4) — (2.8) and the boundary
conditions (2.10} contain four non-dimensional
parameters f, 8, Pr and e. f~2singis the non-
dimensional Coriclis parameter, Pr=y/x the
eddy Prandtl number and |6=w*/N the ratio
of the frequency of the temperature variation
of the ground to the Brumt-Viisdli frequency.
§=dT /[ I (/)] is the ratio of the ampli-
tude of the temperature change at the earth’s
surface to the vertical temperature difference
in the basic state over the diffusion length, and
measures the importance of the nonlinear effects
relative to the linear ones.

For typical atmospheric conditions, @4 ~
10™s™, N~ 1025, vk~ 10m?s™ and 4T~

for x>0
at z=0, (2.10)

for x<0

" 5°K, so that e~ 10, Pr ~ 1 and d~ 107. The

value of f changes from 0 to 2 as the latitude
moves from 0° t0 90°.

Since § is regarded as an aspect ratio (see,
{2.9)), the smallness of § suggests that the
hydrostatic approximation (§ =0) will be excel
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lent (cf. Walsh, 1974) except near the coastline
where the horizontal temperature gradient may
become large (see Section 3).

The value of Pr is expected to be of the order
of one, but its exact value has not been deter-
mined either observationally nor theoretically,
Therefore, we will hereafter assume that pr
is equal to 1 for simplicity. The effect of Pr
will be discussed in Section 4.

Although the above estimate of ¢ suggests
that the nonlinear effects can be important for
LSBC observed in nature, we will hereafter be
concerned with the linear theory in which
e <€ ] is assumed. The effects of nonlinearity
will be briefly discussed in Section 4.

Under the assumptions ¢ € 1 and FPr=1,
the governing equations (2.4) — (2.7) are re-
duced to

& fo=—i g Th %Li @19

g_?+fu:523’72+3272, (2.12)

PG AT,
(2.13)

These equations together with (2.8) and
(2.10) constitute the problem to be solved in
the following.

Before solving the problem for a general
case in which f=0 and =0, we will first con-
sider the simplest case f=6=0 (i.e., the Coriolis
force is absent and the hydrostatic approxima-
tion is made). It is easily observed that, in this
case, the problem becomes independent of any
external parameters. This means that there
exists a similarity solution for this problem.
Once the solution, say u = u (x, z, t), is known,
the dimensional solution u* can be expressed as

w0 (B (O,

(2) 20 o) €19
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Thus, the horizontal dimension Z:x of LSBC
should be scaled by

N Kx 12

oo

When 3=0 but /20, the solution will depend
on f. Therefore, ix will be given by

N K 2
=) FU. (2.16)
where F (f) is a universal function of £

Since the value of § in the atmosphere is
very small, the solution for the general case is
expected to deviate little from the hydrostatic
solution. Thus, the above deductions concerning
the horizontal dimension of LSBC are likely
to remain valid for §0 as far as the condition
§ <€ 1 is satisfied.

If any variable,say »{x, z, ), is expressed as
p=Re[#(x, z)¢!'] and this expression is
substituted into the governing equations, we
obtain equations for the amplitude %, where Re
denotes the real part of the quantity in the
bracket. If these equations are used to derive
a single equation for T, we have

{-o )+ 5
+[o(i— ;22 g;-)zﬂ]%}

az

ax =t azz (2.17)

)To

If the hydrostatic approximation (§=0) is made,
eq. (2.17) becomes

{0-72) +r )5+ a5e)

o
Since the boundary condition for 7 at z=0
becomes

A 1 for x>0

F{O for x<0,

(2.18)

(2.19)

ai‘"/ax becomes infinite as x>0 and z—0. In
order that eq. (2.18) is satisfied, this means that
BT/BZ must also become infinite as x—0 and
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z-+0. Thus, near the coastline, eq. (2.18) becomes

approximately

. ai aE

(7 +5) 3 =0

(2.20)

which implies that, forx ~ O (s)) (¢ < 1),37/0x
becomes O(¢~"}, whiledT/dz becomes O (p7172),
Now, an inspection of eq. (2.17) shows that,
when x becomes O (§*%), the non-hydrostatic
terms, which are multiplied by §*, become im-
portant. For x~ O (§*%) and z ~ O (§"2),
the governing equations (2.11) -- (2.14) and
(2.8) become

0=— gf: +8° gx” +g— , (2.21)
0=5* ga: +gz—ﬁ , (2.22)
0=— ‘:,’;p +T+5 (o gﬁ+%':) (2.23)

=52t +§§ , 2.24)
a“+ %‘: = (2.25)

Assuming that ?~0 {1), 0/8x~Q(67**) and
3/0z~0(82/%), we can derive from eqgs. (2.21) —
(2.25) that #~0 (57", &~0(1) and $~O
(6'/*). Thus, in the region whose horizontal and
vertical dimensions are O(3*%) and 0Q(5V?),
respectively (in  dimensional units, both are
O({x/N)"*),the vertical velocity becomes large
and of the order of ¢ (in dimensional unit, this

hydrostatic
(._,.._ 0(6!/2) _—

e e e
. '

0(8"*) non—-hydrostatic
L E’ > X
777

Land

Sea

Fig. 2. Flow structure near the coastline.
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is of the same order of the horizontal velocity).
The region is hereafter called the non-hydrostatic
region (see Fig. 2). It is noted that the equations
{2.21) — (2.25) do not contain the terms of time
rate of change nor the Coriolis terms, Thus the
structure of the non-hydrostatic region does
not explicitly depend on the effects of time
change and Coriolis force.

2.3. Method of solution

The method of solution is same as in the
previous works (Walsh(1974), KFE, and Ueda
(1983)). The equations for the amplitude #(x,z)
are Fourier--transformed in the horizontal direc-
tion, then solved in the vertical direction, and
finally, inversely Fourier—transformed to obtain
the solution for the amplitude.

The evaluation of the inverse Fourier—trans-
formation with respect to the wavenumber
L in the x-direction has to rely on numerical
calculations which utilize the Newton’s inte-
gration formula. Two calculations have been
made with different independent variables. One
approximates the integration for -eo<Jp<ice by
that for -200<k< 200 with independent variable
k and grid interval 4£=0.01. The other approxi-
mates the same integration by that for
-10°<k<10° with independent variable K=
200+199.99 (loglk 1-5.8)/8.0 and grid interval
4K =0.01. The latter calculation is found to have
enough resolution to obtain the accurate flow
structure in the non-hydrostatic region. On the
other hand, outside of the non-hydrostatic region
the flow structures obtained by the two calcula-
tion essentially coincide with each other.

3. Results
3.1. Non-hydrostatic effect

In order to see the effect of hydrostatic ap-

proximation on the flow field, we first examine
the results for various values of 8. The Coriolis
force is not considered for simplicity throughout
this subsection.

Fig. 3 shows the absclute value of the ampli-
tude of the horizontal wind, 17 (x, z)i for § =
0 and 10 . Note that |7i{=x, 2)! = [fi(x, 2)}. The
overall pattern of %] remains similar for 0 £
& < 10, Near the coastline where the non-
hydrostatic region is expected, however, the
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pattern of [fi] seems to changes with §. (Note
that the horizontal and vertical dimensions of
the non-hydrostatic region in Fig. 3(b) are of
the order of 0.03 and 0.3, respectively.)

Fig. 4 which shows the vertical profile of
jie] at x=0 illustrates more clearly the change
of the pattem of || with 8. As 3 is decreased,
the maximum value of | increases and the
height at which |fi| becomes maximum decreases.
These features seem to support the presence of
the non-hydrostatic region as suggested in the
previous section. In Fig. 4 the profile for 6 =0
for z<107? may not be relizble, because our
numerical calculations do not have enough
resolution of the flow fields forz <101 .2}

Fig. 5 shows close-up views of || near the
coastline for §=0.01 and § =0.02. For these
values of &, the horizontal and vertical dimen-
sions of the non-hydrostatic region are of the
order of 10® and 10, respectively. It is seen
that, for larger value of 8, the maximum value
of |W|, Wmax, is smaller and the: values of x and
z at which [W| becomes maximum, Xmax and
Zmax, are larger. It is also noted that [ de-
creases rapidly with x as x is increased from
xITlZlX-

Fig. 6 summarizes the values of Wiay,
Xmax: Zmax Obtained for various values of 46,
The dots show the results of the numerical
calculations, and the straight lines the
theoretical prediction for the non-hydrostatic
region that #pax~87, Xmax~8%? and zp..
~g'. Each of the results of the numerical
calcuiations fits the corresponding theoretical
prediction very well.

In summary, the flow structure outside of
the non-hydrostatic region near the coastline
does not depend on § and is essentially the
same as that of the hydrostatic solution (§=0)
as far as §<C10™ is satisfied. Although the
results in the case of the presence of Coriolis

2) In the non-hydrostatic region, the vertical wavenum-
ber characteristic of a phenomenon whose char-
acteristic horizontal wavenumber is k£ is of the
order of kY2 (see, eq. (2.20)). Since the largest
horizontal wavenumber considered in the present
numerical caleulation is 10°, the corresponding
largest vertical wavenumber is 1053, This means
that the smallest vertical scale that can be resolved
in the present calculation is 27/10%/3~0.13.
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o

O — N u =

T T x

4 5

Fig. 3. Distribution of absolute value of the amplitude
of the horizontal wind |4 {x, z)! for (a) § = 0 and
(6)8=10"". Only the distribution for x>0 is shown,
since 18 (-x, 2)] = 1% (x, z)1. Dashed contour lines are
drawn for each 0.02, and solid ones for each 0.1.

z

12l

1.0}
0.8}
0.6}
0.4}
o2t s=107"

3 . e =0
[0

o 0.1 0.2 0.3

Fig. 4. Vertical profile of &1 above the coastline for
various values of § (5=0, 1073, 102 and 10y,
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>X(x107%)

2 4 & 8 1

Fig. 5. Distribution of I¥(x, z)| near the coastline for
(a)6=0.01 and (b)3=0.02. Notice that the unit of
the horizontal axis is 107, Dashed contour lines are
drawn for each 0.02, and solid ones for each 0.1.

8

4\
0 Lt

o*d.‘b
-},6\
10—-2 -
ol TSR | Lol Lty
107° 107® 107 1

Fig. 6. Comparison of the calculated values of Woux,
Xmax, Zmax. With the theoretical predictions.
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Fig. 7. Distribution of absolute value of the amplitude
of the horizontal wind 14 (x, z)! for various values of
F@f=0, (®)f= 1.0 and (c) f= 1.5). Dashed con-

tout lines are drawn for each 0.02, and solid ones for
each 0.1.
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force are not shown, the effects of § on the
flow structure are expected to remain quite
similar, since eqs. (2.21) — (2.25) suggest that
the structure of the non-hydrostatic region does
not depend on the Coriolis parameter explicitly.

3.2 Effect of the Coriolis force

Fig. 7 shows the pattern of |t} for various
values of the non-dimensional Coriolis parameter
f- Since the solution outside the non-hydro-
static region does not depend on & for §<10™,
5 is fixed to 10" throughout this subsection.
It is seen from Fig. 7 that the pattern of |i]
remains similar for f<1.0, but it starts to change
rapidly as f becomes larger than 1.0.

Fig. 7 also shows that, for a fixed value of
x, liil has two peaks in the vertical direction,
The peak near the ground corresponds to the
sea or land breeze, and the other peak at higher
altitude to its compensating flow. If the peak
values near the ground and at higher altifude
for a fixed value of x are denoted by juse|
and |uc, respectively, |uspl Is always larger
than|u.|. Fig. 8 shows the dependence of | 54|
on the distance from the coastline for several
values of f. It is seen that the offshore or onshore
wind decreases in amplitude rapidly with in-
creasing x. It is also seen that the dependence
of |usz| on x remains similar for f<1.0. For
f>10, however, |us.| decreases markedly
with increasing f for all x.

JUJ 4

a0
Q08¢

06

02t

Fig. 8. Dependence of |usz| on the distance from the
coastline.
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Fig. 9 shows the non-dimensional horizon-
tal dimension A (= F (f} in (2.16)) as a func-
tion of f when 2 is defined by the value of x
for which |ug;| becomes equal to 0.03%?, For

A

1

2.0

1.6

107

05

o o5 10 15 =20
Fig. 9. Dependence of the non-dimensional horizontal
dimension 1 of LSBC on the non-<dimensional

Coriolis parameter f°

.......

FELE LY N R

N b

IR ARE S LW

H. Niino
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typical atmospheric conditions (NM~107g7,
Tox~300°K, AT~5°K), this corresponds to
0.5m/fs. It is seen from Fig. 9 that 2 remains
almost constant (2.0~2.2) for f<1.0. As f is
increased from 1.0, however, 1 decreases ra-
pidly with f and becomes about 0.9 for f=2.0,
This means that, even if same external para-
meters are imposed, the horizontal dimension
of LSBC at the poles is less than half of that
at the equator because of the effect of the
Coriolis force. It is also noted that the effect
of the Coriolis force becomes significant only
when the latitude is larger than 30°.

3.3 Time evolution

Fig. 10 shows time evolution of LSBC for
§=107 and f=0. The flow fields are shown only
for the half perod(-z/2<f<n/2).Note that

Fig. 10. Time evolution of LSBC for 3=10 and f=0.

3 The choice of this particular value was made rather
arbitrarily. If the value is doubled (je., 0.06), the
horizontal dimension 2 becomes about one third
of the vatue shown in Fig, 9,

the temperature perturbation at the ground
varies as cos(?).
At t=-n/2 when the temperature pertubation
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at the ground vanishes, the land breeze is still
dominant near the earth’s surface. As the
temperature perturbation increases, the sea
breeze Is initiated near the surface of the coast-
line and gradually increases its strength. How-
ever, the sea breeze is confined to the neigh-
bourhood of the coastline (say, x<0.25) even
at r=-xf8. Thus, there is a strong convergence
and upward motion around x=0.25.

At =0 when the temperature perturbation
attains its maximum value, the sea breeze in-
trudes to x=0.25. It is interesting to note that
the height of the maximum horizontal velocity
at x =0.25 is around z = 0.75, while that at x =0
is close to the earth’s surface. This is because
there is the nonthydrostatic region at x =0 {see,
Fig. 4). The sea breeze continues to strengthen
and intrude inland until ¢+ = 7/2 at which the
temperature perturbation vanishes again (see,
t = —x{2). From t =0 to t = x/2, the height
at which the horizontal velocity becomes maxi-
mum is almost unchanged for x<1.0 and is
between -0.75 and 1.25, although it seems to
increase slightly with x forx > 1.0. After ¢ =#/2
the land breeze starts to develop on the coast-
line. The time evolution of the land breeze is
the same as that of the sea breeze except that the
flow direction is opposite.

4. Discussion of the results
4.1  Comparison with the previous studies

The main results obtained in the previous
section may be summarized as follows:
(1) LSBC is well described by the hydrostatic
equation system {§=0) except in the non-hydro-
static region near the coastline, and the flow
fields outside of the non-hydrostatic region for
d % 0 coincide with those of the hydrostatic
solution as far as d=w./N < 107 is satisfied.
{2) The horizontal dimension of LSBC, 2,
is scaled by (N/w)(x/ws}'?, and can be ex-
pressed as

=2 (YR, @

where F (f} is a function of the non-dimensional
Coriolis parameter [ = fafwse. F (f) remains
constant (~ 2.1) for f < 1.0, but monotonically
decreases with increasing f for £>1.0 and be-
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comes 0.9 for f=2.0.

On the other hand, the main results of the
previous studies reviewed in the introduction are
summarized in Table 1.

The fact that LSBC is well described by the
hydrostatic equation system was shown by
Walsh (1974) for several particular combinations
of the external parameters. Since he introduced
a wrong scaling of variables such that the hori-
zontal and the vertical ccordinates are scaled
by the diffusion length, however, he was not
able to prove the fact for a general case. Further-
more, he did not notice the presence of the non-
hydrostatic region above the coastline, As for
the horizontal dimension A4, he suggested the
following relation

Ae~ (N/ fu) (w/e4) V2, (4.2)
However, this relation predicts 4y o0 as fi—0.
Since the presence of the Coriolis force is not
essential for producing LSBC, 2% should be
defined even for fu=0 (see, eq. (4.1)). Thus, eq.
(4.2) is considered to be incorrect. It is impor-
tant to point out that, if his Figs. 2, 3, 4 and 5
are simply rescaled according to (2.9), they
would include more general cases (for a fixed
value of f) except for several features associated
with the non-hydrostatic layer in the immediate
nsighbourhood of the coastline.

KE and Rottuno (1983) argued that i is
determined by the inviscid dynamics. Especially,
Rottuno (1983) suggested that 2« is given by

e ()" for an> futg<in)
(4.3)

N e
W(wi*)f for we<fu($>30°)

However, this expression shows that A.—o0 at
the inertial latitude (ws=f4). Ruttuno (1983)
argued that the effect of viscosity must become
important for w« =f*, However, there seems to
be no particular reason that the viscosity is
important only for the case of ws =f*, Equations
(2.4) and (2.5) show that the magnitude of the
vertical diffusion term in the horizontal momen-

tum equation is of the same order as that of the



Table 1. Comparison of the present results with those of the previous studies.

Model

Scaling

Horizontal scale 2,

Definition of 1

Comments

Walsh — — value of x at non-hydrostatic
(1974) -non-hydrostatic x*):,\/..f_(x) N e which u=0 effects are not
a0 Zx a2 Se Vo for fixed z and ¢ | important.
Prel (:*)__ gadT* (:)
Pr= - g
wi; Wy w
Kimura & | +hydrostatic < for B<1.3 value of x at flow field is
Eguchi -f=0, Pr=1 (x*)=!(x) (heat island) which u becomes | determined by a
(1978) s _ Zae z for 01 det . 1/e of its non-dimensional
-length of island +lor » determined maximum value. | parameter
by characterisics of 2
! (u*)= gedT, (u) internal gravity wave O=a, 1_)'”
, — 2
W N w (N/ew) Vrfwy ? kN
Ueda -non-hydrostatic | same as Walsh value of x at horizontal scale
(1933) (1974) except that Nyt o which u becomes | depends little on
-fx0 % ~ x (_) —ppo 252 of its value )
Pr=1 *)"—‘J—( ) W Wy at x=0 at the
Zy @y N2/ . level of z=0,25.
Rottuno | -hydrostatic N r when f=I,
1983 e [ — for <1 effect ‘of viscosity
(1983) S0 avi—f* \/cu* s may be important,
*Pr=0(inviscid) (wavelength of inertia
gravity wave)
N &
'WJ&T: for f> l
Niino <non-hydrostatic N = < N = value of x at similarity solution
=" ] =, = —_— hict for fixed vaiue
{1987) oy Xa= o 2 \/m* B B F(f), where E}V(Jl;c‘ u becomes for I
rPr=1

G)=25C)

Oy gadT y w
N N

il

0.9<F(f)<2.3 for
o< f<
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local time rate of change term when Pr remains
of the order of one. Thus, the inertial gravity
wave which plays a dominant role in the inviscid
dynamics must be severely modified by the
presence of viscosity.

To demonstrate the importance of the effect
of viscosity for all values of £, inviscid solutions
for various values of f with Pr=0 and §=107
are obtained. Fig. 11 shows the distribution of
the amplitude 12(x, z)i for f=0, 0.5, 0.99 and
1.5. 1t is seen that the horizontal wind becomes
maximum at the ground because of the free-
slip condition there. Furthermore, the amplitude
of LSBC is much larger than that for Pr=1 (see,
Fig. 7). This means that, if the same definition
of the horizontal dimension of LSBC is adopted,
the horizontal dimension for Pr=0 is much larger
than that for Pr=1. As f is increased from 0,
the amplitude rapidly increases and eventually
becomes infinity at =1 {fa= w.). The amplitude
distribution for =099 well illustrates this
feature. It is also noted that the contour lines

o N2 oo
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of the amplitude become nearly horizontal,
These two features make the horizontal dimen-
sion of LSBC infinite as predicted by eq. (4.3).
On the other hand, when Pr=1 as in the present
model, 4+ is a monotonically decreasing function
of f. Especially, A« remains finite even for f=1.
Thus, the suggestion by KE and Rottuno (1983)
that the horizontal dimension of LSBC is deter-
mined by the inviscid dynamics dees not seem
to be correct.

Ueda (1983) examined the effect of Pr on
the linear dynamics of LSBC. Since he used the
similar scaling to Walsh (1974) (see, Table 1),
however, he also had to determine experimental-
ly the horizontal dimension of LSBC based on
the solutions for several particular combinations
of the external parameters. The experimental
formula for the horizontal dimension A+ ob-
tained in this way was

2*=(_N_)D'7N —D-)HZP!’O

[

” (4.4)

Zz
&
o
2R e 25
»X o s 3 Z =X
- (b) (d)

Fig. 11.

Distribution of absolute value of the amplitude of the horizontal wind 1% (x, 2)1 for various values of

f in the inviscid model (Pr=0) ({a)f=0, {(b)/=0.5, (c}/=0.99 and (d)f=1.5). Dashed contour lines are drawn for
each (.02, and solid ones for each 0.1 except for (¢} in which dashed ones for each 0.2 and solid ones for

each 1.0.
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which is considerably different from eq. (4.1).
The reason for this difference may be as follows.
He defined s as a distance from the coastline
at which the horizontal wind #4 at the level
of 2x=0.25 (v/ws«)"'* becomes 25% of its value
at X+=0, As shown in Fig. 4, however, the verti-
cal profile of luxl depends markedly on § =
@y /N because of the presence of the non-hydro-
static region. Thus the horizontal dimensien
defined in the above manner does not reflect
the variation of ux outside of the non-hydro-
static region but reflects that in the non-hydro-
static region. In fact, when § changes in the
range of §<107!, lusg! outside of the non-
hydrostatic region remain unchanged as shown
in Fig. 3. Thus, it does not seem to be appro-
priate to define 4, based on u4 at some fixed
level above the coastline. Rather 2. should be
defined by a distance from the coastline at
which the suitably scaled w, decreases to attain
a particualr value as is done in the present paper.

- In addition to the problem described above,
the expression (4.4) suggests two odd behaviors
of A, First, it does not show any dependence
on the Coriolis parameter. If Fig. 6 of his paper
is carefully examined, A. has a very weak de-
‘pendence of f and increases with increasing f,
which gives an opposite tendency to our result.
The reason of this is not clear. However, the
definition of 24 based on ux above the coast-
line seems to be responsible for producing the
difference. .

Secondly, eq. (4.4) suggests that A4 increases
with » and does not depend on «. However, our
results for Pr=0 and Pr=1 suggest that Ay is
a decreasing fonction of Pr. This speculation is
also supported by the following physical argu-
ment: Suppose that all the external parameters
except » is fixed and v is increased from 0.
When v=0, most of the available potential energy
created by the diffusion of heat from the earth’s
surface {except the small portion to generate
internal gravity waves) can be transformed into
the kinetic energy of LSBC. When v becomes
finite, however, a part of the kinetic energy
must be dissipated through the effect of the
viscosity and the amplitude of the horizontal
velocity must be reduced. Thus, when the
Coriolis force is absent, A, seems to be given by
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Ax=

-G(Pr) (4.5)

W

N( £ y1/2
W

- where G(Pr) is a decreasing function of Pr.

The difference between (4.4) and (4.5) again
seems be caused by the difference of the de-
finition of .. It is clear from the foregoing
discussion, however, that the appropriate hori-
zontal dimension is not given by (4.4) but by
(4.5).

4.2 LSBC over an island of finite width

As mentioned in the introduction, KE con-
sidered LSBC over an island whose width is /
for f/=0, =0 and Pr=1. They showed that the
flow field was described by a single non-dimen-
sional frequency 2 defined by Q=/*13¢, s N*13c13,
Especially, when 2<1.3, the flow structure is
similar to that of the steady heat island. This
criterion may be rewritten as

{/L<)1.5 (4.6)-

in terms of the non-dimensional width of the
island, I/L, where L = (N/w) (x/@e)'®. Since
L is proporticnal to the horizontal dimension
of LSBC, 4+ and is equal to 0.44 &, eq. (4.6)
may be rewritten as

1/24<C0.65.

Now, the physical meaning of the criterion
becomes evident. If the width of the island is
sufficiently small compared with.the horizontal
dimension of LSBC, the flow fields are similar
to those of the steady convection. If [ is suffi-
ciently larger than i, on the other hand, well-
defined LSBCs develop separately over the two
coastlines of the island.

For typical atmospheric conditions, Ax is
about 60km. Thus, eq. (4.7) suggests that the
flow fields around an island whose width is
sufficiently smaller than 40km are similar to
those of the steady heat island. It has been
shown by Kimura (1975) that the horizontal
and vertical dimensions of the steady heat
island are given by I and {(xv/*/N®)''¢, respec-
tively.

(4.7)

4.3 Some miscellgneous problems
a) Effects of general wind
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Effects of a uniform general wind on LSBC
have been discussed by Walsh (1974) and Ueda
(1983). Since the alongshore component of the
general wind does not affect LSBC within the
framework of a linear theory, only the onshore
or offshore component needs to be considered.
When a uniform general wind U, perpendicular
to the coastline is present, the local derivatives
with respect to time in egs. (2.11) - (2.14)
must be replaced by 8/3:1+U(3/6x), where U
is a Froude number defined by

Uy

U= N(es/w5)

(4.6)

Thus, when the Coriolis force is absent and
Pr=1, LSBC in the uniform general wind is a
function of only U. For typical atmospheric
conditions N(re/@y}'* ~3m.s?. Since the
effects of the general wind is expected to become
significant for U>1, a general wind of 3ms™?
or more would affect the dynamics of LSBC
considerably.

In his study of the effects of the general wind
on LSBC, Walsh (1974} used a non-dimensional
general wind U, , defined by

Us

—5-1
ax (el 00) 7 a-‘u.

Une= {4.7)
If his results are expressed in terms of U, they
become to include the results for more general
cases except in the immediate neighbourhood
of the coastline (e.g., Figs. 6 and 9 of his paper).
Ueda (1983) used another nondnnensmna]

general wind U,,d defined by

o~ _ U*L’
Una= (E*/Cﬂ*) e

In his Figs. 1, 2 and 3, Pr is unity. Therefore,
if his results are expressed in terms of U, they
also become to include those for more general
cases.

It is noteworthy that, when the general wind
is present, eqgs. (2.17) and (2.18) are modified to

(035m0 a) )

gt 322]

=8-1Priny., (4.8)
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-(s~52%—%+U%)T=o (4.9)
and

o9 o 2 8
[(‘J“Uﬁ} 77 = 822 ax“]

-(i+U%H%)T:O. (4.10)

The similar argument as in Section 2.2 suggests
that the non-hydrostatic terms become impor-
tant for x<Q(8} and z < O (1) because of the
U(d/0x) term. Since § is a small quantity for
the usual atmospheric conditions, however, the
overall feature of the solution is expected to
depend on only U/ but not on &.

b} Vertical heat flux

The vertical flux associated with LSBC.
was studied by Walsh (1974). He considered
two vertical fluxes, the time-averaged vertical
heat flux Fx (x ) defined by

C plt) 2xfan T

F*(x*)z'pT;;r*—So d’*S_I‘W*T:kdX*
and the horizontally integrated, time-averaged
vertical heat flux Fox defined by Fy (=), where
pis the mean density and Cp the specific heat.
In the present scaling,

2
Filxy)= P:'rp ga(4dT)

N
-(x/w*)ues’”dzr wTdx. (4.11)
Q -x

Thus, Fy and Fox are scaled by
peplgal(dT Y /N ](k/we)?, 4.12)

which shows that the vertical heat fluxes are
inversely proportional to N and proportional
to the diffusion length. )
In his explanation of Fig. 8, Walsh (1974)
mentioned that “the flux in a case of a uniform
stability is approximately tripled when N?
is increased by an order of magitude.” This is
nothing but a reflection of the dependence
of the heat fluxes on N in eq. (4.12). 1t is likely
that the two curves for N2=10 and 10™ in
his Fig. 8 would collapse to a single universal
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curve if Fy is scaled according to {2.9). Similarly,
his Figs. 7 and 9 would include the results for
more general cases after the scaling is changed.

It is of interest whether the heat fluxes
near the ground depend on the value of & or
not, since the non-hydrostatic layer exists for
z<O(d'"%) near the coastline. In the non-
hydrostatic layer, w~Q(3™), x~0(6**) and
T ~ O(1). Thus, the contribution of the vertical
heat fluxes in the non-hydrostatic layer to the
total vertical heat fluxes are of the order of
6'* in the non-dimensional unit. This means
that the vertical heat fluxes depend little on
the value of § and are subject to the scaling
(4.12). The vertical heat flux (or equivalently
the buoyancy production term in the energy
balance equation) is the only source of the
kinetic energy of LSBC. That the non-hydro-
static region contributes very little to the vertical
heat flux is consistent with the fact that the flow
fields outside of the non-hydrostatic layer
does not depend on the value of 4.

e) Asymptotic behavior of LSBC for large non-
dimensional Coriolis parameter

In this subsection, we shall consider the
asymptotic behavior of LSBC when the non-
dimensional Coriolis parameter f is large. This
is equivalent to considering the case in which
the forcing frequency ws becomes small for a
fixed value of the Coriolis parameter fx, or fx
becomes large for a fixed value of ws. This
latter case does not occur in nature, but can be
realized in a laboratory experiment. For large
values of f, the time rate of change terms in
eqs. (2.11) and (2.12) becomes much smaller
than the Coriolis terms and may be neglected,
This suggests that the correct scaling of vari-
ables for this case is:

N 7 v iz
—_ =1 —_— 1;2
tx=f5'¢, x*——f* (—-——f*) Pritx,

1f2
Z*=(i) z, H*=‘gafrT* Proiity,

S
AT
W*—{—G' gaN * P _lw,
1z
P*—Q‘OIAT*(K 2

Ti=AT T, ws=fsw (4.13)
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When the above scaling is introduced, the gover-
ning equations and the boundary conditions
may be approximated as

. ap  du
—p=s— 6x+ ool (4.14)
&
O0=— g” +T, (4.16)
_ 9T
W—F ' (417)
and
u=v=w=0. and
coswt (x>0
T:——{ ¢ ) at z=0, (4.18)
) (x<0)

where the hydrostatic approximation is made
and the continuity equation is given by (2.8).

An inspection of egs. (4.14) — (4.18) and
(2.8) reveals that this problem has a similarity
solution. For example, the similarity solution for
u is given by

u=ulx, z)-coset.

In dimensional units,

U= gaAT* (x/v) e (f* (fem)iie

(&) i xk, (falv) ”22*)003 @yl %
(4.19)

Thus, the horizontal and the vertical dimensions
of LSBC for large f are of the order of (N/fx)-
(afv) 12 (&/v)"* and (faufv) ™%, respectively.
Now one might be tempted to apply these results
to the seasonal wind circulation in which the
forcing frequency wx is 2ryear™. For the usual
atmospheric conditions, the dimensions derived
above correspond to 20(sing) *’km and 300
(sing) ~"/*m, respectively. In the real atmosphere,
however, the seasonal wind circulations seern to

-have much larger horizontal dimension (at least

in the midlatitudes). This is probably because
the seasonal wind circulations in the real atmo-
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sphere are driven by the thermal forcings not
only at the ground but also in the free
atmosphere,

The scaling (4.13) suggests that, for fx > o4,
A« is of the order of (N/fs) - (fulv) /2
(k/v)**  For Pr=1, this means that F (f) is
proportional to f3/2 (see, eq. (2.16)). Thus, if
the scaling (2.9} would have been used instead
of (4.13), the horizontal scale of LSBC changes
like 3% as fis increased (cf. Figs. 7 and 9).

Including the effects of general wind, Ueda
(1983) considered the solution of egs. (4.14) —
(4.18) and (2.8) under a different scaling of
variables. His Figs. 1, 2 and 3 which are obtained
for a special combination of the external para-
~ meters will become to include the results for
more general cases if the scaling is changed to
the present one and the general wind Ux is
scaled by N(v/ f+)*(cf., § 4.3(a)).

4.4  Effects of non-linearity

In order to examine the effects of non-
linearity on LSBC, an initial value problem
given by eqs. (2.4) ~ (2.8) and the boundary
conditions (2.10) are solved numerically for the
case of 6=0, f=0 and Pr=1. The size of the
domain used for the numerical computation
is 25.6 and 9.6 in the horizontal and vertical
directions. Cyclic boundary conditions are
assumed at the lateral boundaries. All the velo-
city components vanish at the vertical boun-
daries. The temperature perturbation is fixed
to zero at the upper boundary, while at the lower
boundary it is given by

T=[1+tanh{x/d)]sin(s), {4.8)
where d gives the width of the transition zone
in which the temperature perturbation smoothly
changes from its value at the sea surface to that
at the land surface. Throughout the present
calculation, d=0.2 is adopted.

The finite difference scheme of the advection
terms is the same as Yoshizaki’s (1985) which
conserves total energy and total enstrophy.
The grid intervals in the x- and z-directions are
equal and Adx=47z=0.2. As for the time inte-
gration, the leap-flog scheme with the time
interval 4¢=xf100 is used.

The computation is started from the basic
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state by introducing the temperature pertur-
bation given by (4.8) at the lower boundary.
It takes about seven days for the flow fields to
become steady in the sense that the fractional
change of the total kinetic energy in the whole
domain from a certain time to the same time of
the following day becomes less than 0.5%.

The computations are made for several values
of ¢. In the following, however, we will show the
results for e=0, which corresponds to the linear
theory, and for £=2, which is the largest value of
¢ adopted in the computations. Although we
have attempted to make the computation for
¢ larger than 2, we have not succeeded because
of a numerical instability. This may be due to
the following reason: During the daytime, the
vertical gradient of the temperature perturbation
becomes negative near the land surface. If a
Rayleigh number is defined near the surface,
based on the diffusion length (x/w«)'"* and the
total temperature difference over this length,
it may be written as

Ra=gal AT —I"(s/0) ") (s/04)*/&*

={e—1)5"2, 4.9
where Pr=1 is assumed. Since ¢ is usually a small
quantity, Rg can esaily exceed the critical value
for the thermal instability only if e is sufficiently
larger than 1. Since the horizontal wavelength
of the fastest growing mode of the thermal
instability is likely to be smaller than the grid
interval dx, perturbations which have the wave-
length of 24x are expected to dominate the
flow flelds with time in the numerical model.
Thus, the numerical instability is eventually
generated. It is noted, however, that in our
model the eddy diffusivity « and eddy kinematic
viscosity » are assumed to express the effects
of mixing due to subgrid motions including those
generated by the thermal instability. Thus, it
may not be meaningful to consider cases in
which e is much larger than 1.

Fig. 12 shows time evolutions of the horizon-
tal velocity u for e=0 and =2 during the tenth
day from the start of the computation. It is
seen that the evolutions for £=0 and &=2 are
considerably similar. However, several differences
between them are also found: The distribution
of u for =0 is symmetric with respect to x=0,
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lines are drawn for each (.02,

LB6T Taquiada(

OunN "H

L16



Vol. 65, No. 6

Journal of the Meteorological Society of Japan

918

*10"0 YB3 J0J UMEIP SIE SOUI IMOIUO) *m AII00[24 [BO[HIAA 3y 107 3daoxs 71 - seowres gy *Sig

tr0T0)X

=1

~

T

—o

N,

)

=)
<

([

o

=]

O
T

/

\oQ

oo o

rbavm

[=)

Lo

(=]

00 e

no0° ¥

™

(=)
<

©w

@

z81=1




December 1987

and its time evolution is similar to the one as
shown in Fig. 10. The distribution of « for =2,
however, is not symmetric with respect to x=0.
At =18r when the temperature perturbation at
_ the land surface changes its sign from negative to
positive, the depth of the land breeze over the
sea is 3.0 and is larger than that over the land,
2.85, where the depth of the breeze is defined by
the maximum height attained by the contour line
of u=0.02. At =19z, on the other hand, the
depth of the sea breeze over the land is 3.4 and is
larger than that over the sea, 3.1. In the linear
model (¢=0), all the depths considered above are
equal to 3.0.

The difference in the depths of the breezes
for =2 reflects the difference in their inten-
sities and may be explained in terms of the
scaling in the linear theory. As eq.(2.10) shows,
the horizontal velocity u« is scaled by gadT/N,
where N is the Brunt-Vaisald frequency corre-
sponding to the basic stratification. In the non-
linear model, however, the basic stratification
is modified by the temperature perturbation.
Thus, the effective value of the Brunt-Vaisala
frequency, N,, over the land in the daytime be-
comes smaller than & and larger in the night-
time. This fact and eq. (2.10) suggest that the
sea breeze is stronger than the land breeze even
in the model in which the eddy diffusivities
are constant both in time and space. The effect
of the temperature stratification -on the relative
intensities of the land and sea breezes-has been
found by Mak and Walsh (1976) based on a
linear theory in which the temperature strati-
fication was a periodic function of time.

Effects of the variation of N, are also re-
flected in the behaviour of the vertical velocity.
Fig. 13 shows the distributions of the vertical
velocity for =18z and 19 and for £=0 and ¢=2.
In the linear model, the vertical velocity is anti-
symmetric with respect to x=0. In the non-
linear model, however, it is not. At r=18x%
when N, over the land is large, the vertical
velocity over the land is slightly weaker than
that in the linear model. At =19z when N,
over the land is small, on the other hand, the
vertical velocity over the land is larger than
that over the sea, and both are larger than
that in the linear model. :

As to the non-dimensional horizontal di-
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mension of the sea breeze. 2, the linear model
gives e=2.10“), while the non-linear model
(e=2) gives =2.15. Thus, A seems to be a weakly
increasing function of e. Since € can be con-
sidered as a ratic of the advection velocity to
the group velocity of the hydrostatic internal
gravity wave whose vertical scale and frequency
ate (#/w+)'* and @, respectively, it is ex-
pected that, when ¢ is sufficiently larger than -
unity, the penetration velocity of the sea breeze
into inland is determined by the advection
velocity, This means that the front of the sea
breeze bears the nature of a gravity current as
suggested from observations {(e.g, Simpson
et al, 1977) and laboratory experiments {e.g.,
Mitsumoto et al., 1983). It would be interesting
to see the dependence of 2 on ¢ for larger values
of &. However, the numerical instability and the
assumption of the constant eddy diffusivity and
consiant eddy kinematic viscosity have prevented
the computations for ¢>>2 as described above.

5. Summary and conclusions

The linear theory of land and sea breeze
circulation is developed to clarify the physical
process which determines the horizontal di-
mensjon of LSBC. It is found that, after suitable
scaling of variables and under hydrostatic appro-
ximation, a similarity solution exists when the
Coriolis - force is absent and the eddy Prandil
number is one. Even if the non-hydrostatic
effects are considered, the solution remains
valid outside the tiny region right above the
coastline where the hydrostatic approximation
breaks down. The existence of the similarity
solution has not been noticed in the previous
studies Walsh (1974), Kimura and Eguchi (1978),
Ueda (1983) and Rottuno (1983), whose results
are critically discussed in the light of the present
study. The horizontal and vertical dimensions

. of LSBC are scaled by Nx'/wz?* and s?w3'’?,

respectively, and the horizontal and vertical
velocities by gadT/N and gadT - w./ N3, re-
spectively.

When the Coriolis force is present, the solu-
tion depends on the non-dimensional Costolis

4 This value is slightly smailler than the theoretical
value, 2.2,
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parameter f = fifws. Especially, the horizontal
dimension Ax of LSBC is given by A,=
Ne'rw®® F (), where F (f) is a function of £
F remains almost constant {(~ 2.1) for f < |
(latitude less than 30°), but decreases rapidly
with increasing f for f > 1. F becomes 0.9 for
f =2 which corresponds to the poles. These re-
sults suggest that the effect of the Coriolis force
is not imnportant for LSBC for latitudes less than
30°. Tt would be of interest to compare the
present results with observations at various
latitudes if available.

The effect of increasing the eddy Prandtl

number Pr=v/x is argued to weaken LSBC and
therefore to decrease the horizontal dimension of
1.SBC.

The effect of the nonlinearity is also ex-
amined by a nonlinear numerical model. It is
found that the nonlinearity breaks down several
symmetries of LSBC which are present in the
linear model. These features are explained in
terms of variation of the effective temperature
stratification. It is also found that, within the
degree of nonlinearity considered in this paper,
the effect of nonlinearity increases the hori-
zonal dimension of sea breeze circulation only
slightly. Unfortunately, the assumption of
constant eddy diffusivity and eddy kinematic
viscosity prevented us from studying the effect
of strong nonlinearity on the flow field. How-
ever, it should be remembered that the same
assumption has simplified the problem con-
siderably and enabled us to obtain a physical
insight leading to the various important de-
ductions described above.
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